133 research outputs found

    Dre-miR-2188 Targets Nrp2a and Mediates Proper Intersegmental Vessel Development in Zebrafish Embryos

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) are a class of small RNAs that are implicated in the control of eukaryotic gene expression by binding to the 3'UTR of target mRNAs. Several algorithms have been developed for miRNA target prediction however, experimental validation is still essential for the correct identification of miRNA targets. We have recently predicted that Neuropilin2a (Nrp2a), a vascular endothelial growth factor receptor which is essential for normal developmental angiogenesis in zebrafish, is a dre-miR-2188 target. METHODOLOGY: Here we show that dre-miR-2188 targets the 3'-untranslated region (3'UTR) of Nrp2a mRNA and is implicated in proper intersegmental vessel development in vivo. Over expression of miR-2188 in zebrafish embryos down regulates Nrp2a expression and results in intersegmental vessel disruption, while its silencing increases Nrp2a expression and intersegmental vessel sprouting. An in vivo GFP sensor assay based on a fusion between the GFP coding region and the Nrp2a 3'UTR confirms that miR-2188 binds to the 3'UTR of Nrp2a and inhibits protein translation. CONCLUSIONS: We demonstrate that miR-2188 targets Nrp2a and affects intersegmental vessel development in zebrafish embryos

    Kinetic modelling of competition and depletion of shared miRNAs by competing endogenous RNAs

    Full text link
    Non-conding RNAs play a key role in the post-transcriptional regulation of mRNA translation and turnover in eukaryotes. miRNAs, in particular, interact with their target RNAs through protein-mediated, sequence-specific binding, giving rise to extended and highly heterogeneous miRNA-RNA interaction networks. Within such networks, competition to bind miRNAs can generate an effective positive coupling between their targets. Competing endogenous RNAs (ceRNAs) can in turn regulate each other through miRNA-mediated crosstalk. Albeit potentially weak, ceRNA interactions can occur both dynamically, affecting e.g. the regulatory clock, and at stationarity, in which case ceRNA networks as a whole can be implicated in the composition of the cell's proteome. Many features of ceRNA interactions, including the conditions under which they become significant, can be unraveled by mathematical and in silico models. We review the understanding of the ceRNA effect obtained within such frameworks, focusing on the methods employed to quantify it, its role in the processing of gene expression noise, and how network topology can determine its reach.Comment: review article, 29 pages, 7 figure

    DAZL Relieves miRNA-Mediated Repression of Germline mRNAs by Controlling Poly(A) Tail Length in Zebrafish

    Get PDF
    BACKGROUND:During zebrafish embryogenesis, microRNA (miRNA) miR-430 contributes to restrict Nanos1 and TDRD7 to primordial germ cells (PGCs) by inducing mRNA deadenylation, mRNA degradation, and translational repression of nanos1 and tdrd7 mRNAs in somatic cells. The nanos1 and tdrd7 3'UTRs include cis-acting elements that allow activity in PGCs even in the presence of miRNA-mediated repression. METHODOLOGY/PRINCIPAL FINDINGS:Using a GFP reporter mRNA that was fused with tdrd7 3'UTR, we show that a germline-specific RNA-binding protein DAZ-like (DAZL) can relieve the miR-430-mediated repression of tdrd7 mRNA by inducing poly(A) tail elongation (polyadenylation) in zebrafish. We also show that DAZL enhances protein synthesis via the 3'UTR of dazl mRNA, another germline mRNA targeted by miR-430. CONCLUSIONS/SIGNIFICANCE:Our present study indicated that DAZL acts as an "anti-miRNA factor" during vertebrate germ cell development. Our data also suggested that miRNA-mediated regulation can be modulated on specific target mRNAs through the poly(A) tail control

    MicroRNAs in pulmonary arterial remodeling

    Get PDF
    Pulmonary arterial remodeling is a presently irreversible pathologic hallmark of pulmonary arterial hypertension (PAH). This complex disease involves pathogenic dysregulation of all cell types within the small pulmonary arteries contributing to vascular remodeling leading to intimal lesions, resulting in elevated pulmonary vascular resistance and right heart dysfunction. Mutations within the bone morphogenetic protein receptor 2 gene, leading to dysregulated proliferation of pulmonary artery smooth muscle cells, have been identified as being responsible for heritable PAH. Indeed, the disease is characterized by excessive cellular proliferation and resistance to apoptosis of smooth muscle and endothelial cells. Significant gene dysregulation at the transcriptional and signaling level has been identified. MicroRNAs are small non-coding RNA molecules that negatively regulate gene expression and have the ability to target numerous genes, therefore potentially controlling a host of gene regulatory and signaling pathways. The major role of miRNAs in pulmonary arterial remodeling is still relatively unknown although research data is emerging apace. Modulation of miRNAs represents a possible therapeutic target for altering the remodeling phenotype in the pulmonary vasculature. This review will focus on the role of miRNAs in regulating smooth muscle and endothelial cell phenotypes and their influence on pulmonary remodeling in the setting of PAH

    Discovery of Porcine microRNAs and Profiling from Skeletal Muscle Tissues during Development

    Get PDF
    MiRNAs (microRNAs) play critical roles in many important biological processes such as growth and development in mammals. In this study, we identified hundreds of porcine miRNA candidates through in silico prediction and analyzed their expression in developing skeletal muscle using microarray. Microarray screening using RNA samples prepared from a 33-day whole embryo and an extra embryo membrane validated 296 of the predicted candidates. Comparative expression profiling across samples of longissimus muscle collected from 33-day and 65-day post-gestation fetuses, as well as adult pigs, identified 140 differentially expressed miRNAs amongst the age groups investigated. The differentially expressed miRNAs showed seven distinctive types of expression patterns, suggesting possible involvement in certain biological processes. Five of the differentially expressed miRNAs were validated using real-time PCR. In silico analysis of the miRNA-mRNA interaction sites suggested that the potential mRNA targets of the differentially expressed miRNAs may play important roles in muscle growth and development

    Assessing the Utility of Thermodynamic Features for microRNA Target Prediction under Relaxed Seed and No Conservation Requirements

    Get PDF
    BACKGROUND: Many computational microRNA target prediction tools are focused on several key features, including complementarity to 5'seed of miRNAs and evolutionary conservation. While these features allow for successful target identification, not all miRNA target sites are conserved and adhere to canonical seed complementarity. Several studies have propagated the use of energy features of mRNA:miRNA duplexes as an alternative feature. However, different independent evaluations reported conflicting results on the reliability of energy-based predictions. Here, we reassess the usefulness of energy features for mammalian target prediction, aiming to relax or eliminate the need for perfect seed matches and conservation requirement. METHODOLOGY/PRINCIPAL FINDINGS: We detect significant differences of energy features at experimentally supported human miRNA target sites and at genome-wide sites of AGO protein interaction. This trend is confirmed on datasets that assay the effect of miRNAs on mRNA and protein expression changes, and a simple linear regression model leads to significant correlation of predicted versus observed expression change. Compared to 6-mer seed matches as baseline, application of our energy-based model leads to ∟3-5-fold enrichment on highly down-regulated targets, and allows for prediction of strictly imperfect targets with enrichment above baseline. CONCLUSIONS/SIGNIFICANCE: In conclusion, our results indicate significant promise for energy-based miRNA target prediction that includes a broader range of targets without having to use conservation or impose stringent seed match rules

    A global view of porcine transcriptome in three tissues from a full-sib pair with extreme phenotypes in growth and fat deposition by paired-end RNA sequencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Elucidation of the pig transcriptome is essential for interpreting functional elements of the genome and understanding the genetic architecture of complex traits such as fat deposition, metabolism and growth.</p> <p>Results</p> <p>Here we used massive parallel high-throughput RNA sequencing to generate a high-resolution map of the porcine mRNA and miRNA transcriptome in liver, longissimus dorsi and abdominal fat from two full-sib F<sub>2 </sub>hybrid pigs with segregated phenotypes on growth, blood physiological and biochemical parameters, and fat deposition. We obtained 8,508,418-10,219,332 uniquely mapped reads that covered 78.0% of the current annotated transcripts and identified 48,045-122,931 novel transcript fragments, which constituted 17,085-29,499 novel transcriptional active regions in six tested samples. We found that about 18.8% of the annotated genes showed alternative splicing patterns, and alternative 3' splicing is the most common type of alternative splicing events in pigs. Cross-tissue comparison revealed that many transcriptional events are tissue-differential and related to important biological functions in their corresponding tissues. We also detected a total of 164 potential novel miRNAs, most of which were tissue-specifically identified. Integrated analysis of genome-wide association study and differential gene expression revealed interesting candidate genes for complex traits, such as <it>IGF2, CYP1A1, CKM </it>and <it>CES1 </it>for heart weight, hemoglobin, pork pH value and serum cholesterol, respectively.</p> <p>Conclusions</p> <p>This study provides a global view of the complexity of the pig transcriptome, and gives an extensive new knowledge about alternative splicing, gene boundaries and miRNAs in pigs. Integrated analysis of genome wide association study and differential gene expression allows us to find important candidate genes for porcine complex traits.</p

    Identification and Characterization of MicroRNAs in Normal Equine Tissues by Next Generation Sequencing

    Get PDF
    The role of microRNAs (miRNAs) as a post-transcriptional gene regulator has been elucidated in a broad range of organisms including domestic animals. Characterization of miRNAs in normal tissues is an important step to investigate the functions of miRNAs in various physiological and pathological conditions. Using Illumina Next Generation Sequencing (NGS) technology, we identified a total of 292 known and 329 novel miRNAs in normal horse tissues including skeletal muscle, colon and liver. Distinct sets of miRNAs were differentially expressed in a tissue-specific manner. The miRNA genes were distributed across all the chromosomes except chromosomes 29 and 31 in the horse reference genome. In some chromosomes, multiple miRNAs were clustered and considered to be polycistronic transcript. A base composition analysis showed that equine miRNAs had a higher frequency of A+U than G+C. Furthermore, U tended to be more frequent at the 59 end of miRNA sequences. This is the first experimental study that identifies and characterizes the global miRNA expression profile in normal horse tissues. The present study enriches the horse miRNA database and provides useful information for further research dissecting biological functions of miRNAs in horse.open2
    • …
    corecore